If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+27x-18=0
a = 4; b = 27; c = -18;
Δ = b2-4ac
Δ = 272-4·4·(-18)
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{113}}{2*4}=\frac{-27-3\sqrt{113}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{113}}{2*4}=\frac{-27+3\sqrt{113}}{8} $
| -3+w/4=-31 | | 3x+13=(4x+9x-16)1/2 | | -8=5v+7 | | w-8=7.8 | | x=1/23x+13(4x+9x-16) | | w-9=7.8 | | 50-5r=20 | | 6w+40=82-3w | | 2w+40=82-4w | | 4w+20=62-3w | | 10x=40(3-x) | | 9+4y-5+3y=41y | | x^2+15x+50=1 | | 2x2–36x+162=0 | | x=1/16 | | (85+60+s)/(3)=70 | | 1(-2y+3)=-7 | | -115=5(5-4x) | | 120=8(6-3x) | | 16=6-3x+1 | | a1+a2+a3=0 | | 5x-28+6x=-6+4-13 | | 3/5(-7x+2)=8 | | 4y+16=3y-12 | | 5m+-2=3 | | 2×x+13=37 | | 10/3x-5/6=2/3 | | 7-10x=2x-5 | | (3x-1)(5x)(1/2)=60 | | a²+7a+6=0 | | 4(x-2)+9=25 | | 11+6p=7 |